Designing structured tight frames via an alternating projection method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Ellipsoidal Tight Frames and Projection Decompositions of Operators

We prove the existence of tight frames whose elements lie on an arbitrary ellipsoidal surface within a real or complex separable Hilbert space H , and we analyze the set of attainable frame bounds. In the case whereH is real and has finite dimension, we give an algorithmic proof. Our main tool in the infinite dimensional case is a result we have proven which concerns the decomposition of a posi...

متن کامل

An Inexact Proximal Alternating Directions Method For Structured Variational Inequalities∗

In this paper we propose an appealing inexact proximal alternating directions method (abbreviated as In-PADM) for solving a class of monotone variational inequalities with certain special structure, and this structure under consideration is common in practice. We prove convergence of In-PADM method while the inexact term is arbitrary but satisfied some suitable conditions. For solving the varia...

متن کامل

Alternating minimization and projection methods for structured nonconvex problems

We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x, y) = f(x)+Q(x, y)+g(y), where f : R → R∪{+∞} and g : R → R∪{+∞} are proper lower semicontinuous functions, and Q : R × R → R is a smooth C function which couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gau...

متن کامل

Structured Sparsity via Alternating Direction Methods

We consider a class of sparse learning problems in high dimensional feature space regularized by a structured sparsity-inducing norm that incorporates prior knowledge of the group structure of the features. Such problems often pose a considerable challenge to optimization algorithms due to the non-smoothness and non-separability of the regularization term. In this paper, we focus on two commonl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2005

ISSN: 0018-9448

DOI: 10.1109/tit.2004.839492